Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels

نویسندگان

  • Michael Köttgen
  • Alexis Hofherr
  • Weizhe Li
  • Kristy Chu
  • Stacey Cook
  • Craig Montell
  • Terry Watnick
چکیده

BACKGROUND Sperm have but one purpose, to fertilize an egg. In various species including Drosophila melanogaster female sperm storage is a necessary step in the reproductive process. Amo is a homolog of the human transient receptor potential channel TRPP2 (also known as PKD2), which is mutated in autosomal dominant polycystic kidney disease. In flies Amo is required for sperm storage. Drosophila males with Amo mutations produce motile sperm that are transferred to the uterus but they do not reach the female storage organs. Therefore Amo appears to be a mediator of directed sperm motility in the female reproductive tract but the underlying mechanism is unknown. METHODOLOGY/PRINCIPAL FINDINGS Amo exhibits a unique expression pattern during spermatogenesis. In spermatocytes, Amo is restricted to the endoplasmic reticulum (ER) whereas in mature sperm, Amo clusters at the distal tip of the sperm tail. Here we show that flagellar localization of Amo is required for sperm storage. This raised the question of how Amo at the rear end of sperm regulates forward movement into the storage organs. In order to address this question, we used in vivo imaging of dual labelled sperm to demonstrate that Drosophila sperm navigate backwards in the female reproductive tract. In addition, we show that sperm exhibit hyperactivation upon transfer to the uterus. Amo mutant sperm remain capable of reverse motility but fail to display hyperactivation and directed movement, suggesting that these functions are required for sperm storage in flies. CONCLUSIONS/SIGNIFICANCE Amo is part of a signalling complex at the leading edge of the sperm tail that modulates flagellar beating and that guides a backwards path into the storage organs. Our data support an evolutionarily conserved role for TRPP2 channels in cilia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-4: Sperm Preparation: Biomimetic Aspects

With the advent of human assisted reproduction in the year 1978 numerous techniques were developed to isolate spermatozoa capable to fertilize oocytes. While early methodologies only focused on the aim of isolating viable, motile spermatozoa, with further progress of assisted reproductive technology, particularly for ICSI, it rapidly became clear that these two parameters are insufficient for t...

متن کامل

PKD2 Cation Channel Is Required for Directional Sperm Movement and Male Fertility

Sperm of both mammals and invertebrates move toward specific sites in the female reproductive tract. However, molecular mechanisms for sperm to follow directional cues are unknown. Here, we report genetic analysis of Drosophila Pkd2 at 33E3 (Pkd2, CG6504), which encodes a Ca(2+)-activated, nonselective cation channel homologous to the human Pkd2 autosomal dominant polycystic kidney disease (ADP...

متن کامل

Large neurological component to genetic differences underlying biased sperm use in Drosophila.

Sperm competition arises as a result of complex interactions among male and female factors. While the roles of some male factors are known, little is known of the molecules or mechanisms that underlie the female contribution to sperm competition. The genetic tools available for Drosophila allow us to identify, in an unbiased manner, candidate female genes that are critical for mediating sperm c...

متن کامل

NEW RESEARCH HORIZON Review Rediscovering sperm ion channels with the patch-clamp technique

Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the...

متن کامل

Rediscovering sperm ion channels with the patch-clamp technique.

Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011